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An infinite square well with a discontinuous step is one of the simplest systems to exhibit non-Newtonian
ray-splitting periodic orbits. This system is analyzed using both time-independent perturbation theory �PT� and
periodic-orbit theory and the approximate formulas for the energy eigenvalues derived from these two ap-
proaches are compared. The periodic orbits of the system can be divided into classes according to how many
times they reflect from the potential step. Different classes of orbits contribute to different orders of PT. The
dominant term in the second-order PT correction is due to non-Newtonian orbits that reflect from the step
exactly once. In the limit in which PT converges, the periodic-orbit theory results agree with those of PT, but
outside of this limit the periodic-orbit theory gives much more accurate results for energies above the potential
step.
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I. INTRODUCTION

Periodic-orbit theory is one of the most interesting devel-
opments in the study of the relationship between classical
and quantum mechanics �1�. The centerpiece of periodic-
orbit theory is the Gutzwiller trace formula which relates the
quantum density of states to properties of the periodic orbits
in the classical system. The trace formula is generally a
semiclassical approximation, which is expected to become
more accurate as �→0. However, for some systems
periodic-orbit theory can produce explicit formulas for the
quantum energies that are exact �2,3�. Periodic-orbit theory
has found particularly fruitful application in the study of
quantum systems with chaotic classical counterpart �1,4–6�.

Recently periodic-orbit theory has been extended to the
case of ray-splitting systems �7�. In most systems, the wave-
length of a quantum particle in the semiclassical limit
��→0� is small compared to all relevant length scales in the
classical system. In this case the quantum wave equations
reduce to ray equations and the particle obeys Newtonian
mechanics. In ray-splitting systems, however, the potential
changes significantly even on length scales that are small
compared to the wavelength of the quantum particle in the
semiclassical limit. This will occur if there is a discontinuous
change in the potential within the region accessible to the
particle. In the semiclassical limit of a ray-splitting system a
particle will follow Newtonian mechanics everywhere except
at the discontinuous boundary. At the discontinuity the par-
ticle may be transmitted across the boundary or reflected
from it, so the ray splits into two parts. The non-Newtonian
periodic orbits that result from this ray-splitting can influ-
ence the quantum dynamics. Recent computational and ex-
perimental studies of ray-splitting systems have revealed sig-
natures of non-Newtonian periodic orbits in the Fourier
transform of the quantum density of states �8–13�, the distri-
bution of level spacings �9,14,15�, and the scarring of energy
eigenstates �8,9,11,13�.

Periodic-orbit theory is typically applied to systems with
chaotic classical dynamics. The quantum versions of these

systems are generally not amenable to exact solution, or even
approximation methods like perturbation theory, and must be
studied numerically. Ray-splitting systems are interesting in
this regard because their classical dynamics may exhibit
some properties of chaos �like an exponential proliferation of
periodic orbits with increasing period� but perturbation
theory may still be applied to the quantum dynamics of the
system �at least for certain parameter regimes�. For some of
these systems exact formulas have been found which give
the quantum energy eigenstates as a sum over the classical
�Newtonian and non-Newtonian� periodic orbits. These cases
allow for a direct analytical comparison between the results
of perturbation theory and those of periodic-orbit theory. The
goal of this study is to carry out this comparison for the
simplest possible system: the asymmetric infinite square well
�AISW�.

The AISW consists of an infinite square well of width 2a
with a discontinuous step of height V0 at the center of the
well �16–18�. The potential energy function is

V�x� = �� , �x� � a

0, − a � x � 0

V0, 0 � x � a .
� �1�

A plane wave with energy E�V0 incident on the boundary at
x=0 may be reflected with probability r2 or transmitted with
probability 1−r2, where

r =
1 − �1 − V0/E
1 + �1 − V0/E

. �2�

Note that r does not depend on �, so these non-Newtonian
reflections persist in the semiclassical limit and the classical
dynamics contains non-Newtonian periodic orbits such as
those shown in Fig. 1. The orbit N is the Newtonian orbit
that moves back and forth between the hard walls at x
= �a. The orbit L is a non-Newtonian orbit that reflects
when it reaches the boundary at x=0 from the left, so this
orbit is confined to the left side of the well. The orbit R is
confined to the right side of the well, reflecting when it
reaches the boundary at x=0. These three basic orbits can be*ttimberlake@berry.edu
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combined to form an infinite variety of other periodic orbits.
Non-Newtonian orbits are also possible for E�V0, but in
this case the orbits are “ghost orbits” that explore the classi-
cally forbidden right side of the well. For perturbation theory
to be valid, the energy of the particle must be greater than V0,
so there will be no need to consider the case E�V0 in this
paper.

Section II presents the results of a second-order
�Rayleigh-Schrödinger� time-independent perturbation
theory �PT� analysis of the AISW. Section III details the
application of periodic-orbit theory to this system, with the
goal of providing an approximate formula for the energies
that is comparable in accuracy to the second-order PT re-
sults. The application of periodic-orbit theory to the AISW
clearly shows that periodic orbits with different numbers of
reflections at x=0 contribute to different orders of PT. The
second-order PT correction is due predominantly to non-
Newtonian orbits that have a single reflection from the po-
tential step. Section IV presents a comparison of the results
of PT and periodic-orbit theory to the exact energy eigenval-
ues. The approximation derived from periodic-orbit theory is
shown to be more accurate than that derived from PT. Sec-
tion V provides a summary and discussion of the results.
Most of the details for the PT and periodic-orbit theory cal-
culations are given in Appendices at the end of the paper.

II. PERTURBATION THEORY

Standard �Rayleigh-Schrödinger� time-independent per-
turbation theory proceeds by writing the full Hamiltonian for
the system as H=H0+H� where H0 is the Hamiltonian of the
“unperturbed” system and H� is the perturbation. For the
AISW, the unperturbed system is simply an infinite square
well with potential function

V�x� = 	� , �x� � a

0, �x� � a

 , �3�

where the width of the well is 2a. This system is discussed in
almost any textbook on elementary quantum mechanics �19�.
The energy eigenvalues of this system are

En
�0� =

�2�2n2

8ma2 , �4�

where m is the mass of the particle in the well. The wave
function for the energy eigenstates are

	n
�0��x� =

1
�a

sin�n��x + a�
2a

� . �5�

The perturbation for the AISW is then

H� = �0, x � 0

V0, 0 � x � a

0, x � a
� , �6�

where V0 is the height of the potential step inside the well.
The infinite square well has no degeneracies, so nondegen-
erate PT can be applied to find approximations for the energy
eigenvalues of the AISW. The first order correction is

En
�1� = 
	n

�0��Vp�	n
�0�� =

V0

a
�

0

a

sin2�n��x + a�
2a

�dx =
V0

2
.

�7�

This correction simply shifts each energy eigenvalue upward
by half the height of the potential step. The second-order
correction is given by

En
�2� = �

k�n

�
	k
�0��Vp�	n

�0���2

En
�0� − Ek

�0� . �8�

The second-order correction is evaluated in Appendix A and
the result is

En
�2� =


nma2V0
2

2�2�2n2 + O�ma2V0
2

�2n3 � , �9�

where


n = 	3, n is even

− 1, n is odd

 �10�

and O�g�n�� indicates a function f�n� that is less than some
constant times g�n� for all n greater than some value n=C.
So to second order, the energies of the AISW are given by

En =
�2�2n2

8ma2 +
V0

2
+


nma2V0
2

2�2�2n2 + O�ma2V0
2

�2n3 � . �11�

To simplify the notation it is helpful to introduce a dimen-
sionless constant

� =
ma2V0

�2 . �12�

Note that this constant provides information about the size of
the potential step V0 relative to the ground state energy of the
infinite square well E1

�0�, since

V0

E1
�0� =

8ma2V0

�2�2 =
8�

�2 . �13�

In terms of this dimensionless constant, the AISW energies
are approximately given by

FIG. 1. Periodic orbits in the asymmetric infinite square well.
The Newtonian orbit N bounces back and forth between the infinite
walls at x= �a. The non-Newtonian orbits L and R reflect when
they reach the discontinuity in the potential at x=0 and are confined
to the left and right sides of the well, respectively.
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En = E1
�0��n2 +

4�

�2 +
4
n�2

�4n2 + O��2

n3 �� . �14�

The O��2 /n3� terms can be ignored for sufficiently large n.
Before any attempt is made to use the results of PT, one

must carefully consider whether or not the perturbation ex-
pansion will converge. The requirement for the rapid conver-
gence of the perturbation expansion is �20�

� 
	k
�0��Vp�	n

�0��
En

�0� − Ek
�0� � =

8�

�3� �− 1�n�k − n� − k − n

�k2 − n2�2 � � 1,

�15�

for all k�n. It is clear that the left side of Eq. �15� will be
largest when k=n�1, in which case

� 
	n�1
�0� �Vp�	n

�0��
En

�0� − En�1
�0� � =

8�

�3

2n � 1 
 �− 1�n

�2n � 1�2 =
4�

�3n
+ O� �

n2� .

�16�

So the condition for the convergence of PT reduces to

�

n
� 1. �17�

III. PERIODIC-ORBIT THEORY

Dabaghian and Jensen derived an exact formula for the
energy eigenvalues for the AISW in terms of an infinite sum
over the periodic orbits of the classical system �18�. The
procedure they used does not converge for E�V0 �21�, but a
convergent formula for E�V0 can be obtained by accounting
for ghost orbits �orbits that exist in the right side of the well,
which is forbidden in Newtonian mechanics� �3,21�. The
analysis in this paper is limited to large n for which En
�V0, so the effect of ghost orbits will be ignored and the
simpler formula of Ref. �18� will be used.

Dabghian and Jensen give their formula in terms of the
discrete quantum actions Sn. These quantum actions are re-
lated to the energy eigenvalues of the system via the defini-
tion of the classical action length for a particle with energy E
moving across the well

S�E� = a�2mE + a�2m�E − V0� . �18�

This equation can be inverted to find the energy as a function
of action

E�S� =
�S2 + 2ma2V0�2

8ma2S2 �19�

and the quantum energy eigenvalues are then given by E�Sn�.
The periodic-orbit formula for the reduced quantum ac-

tion �sn=Sn /�� associated with the nth energy eigenstate is
�18�

sn = 2�n −
�

2
− �

��n−1/2�

��n+1/2�

N̄�s�ds

−
1

�
Im�

p,�
�

��n−1/2�

��n+1/2� Ap
�

�
ei�spds , �20�

where the variable s is the reduced classical action length s

=S /�. N̄�s� is the Weyl average for the density of states with
E�V0 in the AISW, given by

N̄�s� =
s

�
−

1

2
. �21�

The first integral in Eq. �20� can be evaluated and the for-
mula for the reduced actions can be simplified to

sn = ��n − �n� , �22�

where

�n �
1

�2 Im�
p,�
�

��n−1/2�

��n+1/2� Ap
�

�
ei�spds . �23�

The index p labels all of the fundamental periodic orbits of
the system �orbits that are not simply repetitions of other
periodic orbits�. The index � accounts for repetitions of these
orbits. The classical action of each periodic orbit is given by

Sp = nL2a�2mE + nR2a�2m�E − V0� �24�

where nL and nR are the number of times the orbits passes
back and forth across the left and right sides of the well,
respectively. The quantity sp, which appears in Eq. �23�, is
then the reduced classical action for a periodic-orbit

sp =
Sp

�
= �nL + nR�s +

2��nL − nR�
s

. �25�

The factor Ap is a weighting factor given by

Ap = �− 1���p�r��p�t��p� �26�

where ��p� counts the number of times the orbit p reflects
from the barrier at x=0, ��p� counts the number of times the
orbit transmits through the barrier, and ��p� counts the com-
bined number of reflections from the hard walls and right
reflections from the boundary �each of which results in a sign
change in the particle’s wave function�. The reflection coef-
ficient r is found by substituting Eq. �19� into Eq. �2� to find

r =
2ma2V0

S2 =
2�

s2 �27�

with � defined as in Eq. �12�. The transmission coefficient t
is given by

t2 = 1 − r2 = 1 −
4�2

s4 . �28�

A more detailed discussion of this formula can be found in
Ref. �18�.

Substituting Eq. �22� into Eq. �19� provides an exact for-
mula for the energy eigenvalues of the AISW in terms of n
and �n
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En = E��sn� =
�2�2n2

8ma2 +
V0

2
−

�2�2n�n

4ma2 +
�2�2�n

2

8ma2

+
ma2V0

2

2�2�2�n − �n�2

= E1
�0��n2 +

4�

�2 − 2n�n + �n
2 +

4�2

�4n2

+ O��2�n

n3 �� . �29�

A comparison of this result with the PT formula �Eq. �14��
shows that the zeroth and first order PT terms are also
present in Eq. �29�. These terms arise from the nonoscillatory
part of Eq. �20�, which is associated with the Weyl average
�Eq. �21��. To compare the periodic-orbit theory result to the
second-order PT correction it is necessary to evaluate the
oscillatory term �n using Eq. �23�. This formula involves a
sum over all �Newtonian and non-Newtonian� periodic orbits
of the classical system, including all repetitions of periodic
orbits. The Newtonian orbit and its repetitions will be ad-
dressed first.

A. Newtonian orbits

The Newtonian periodic orbit passes back and forth
across the entire well from x=−a to x=a without reflecting
from the potential discontinuity at x=0. For this orbit nL
=nR=1, and Eq. �25� then gives sp=2s. Since this orbit re-
flects once off of each of the two hard walls, but does not
reflect from the potential step, it is clear that ��p�=0, ��p�
=2, and ��p�=2. If the contribution of the Newtonian orbits
and its repetitions to �n is designated by �n,0, then

�n,0 =
1

�2 Im�
�=1

�
1

�
�

��n−1/2�

��n+1/2� �1 −
4�2

s4 ��

ei2�sds

=
8 log�2��2

�6n5 + O��2

n6 � . �30�

The details of this calculation are given in Appendix B 1.
Now �n appears twice in Eq. �29�: once in a term involving
n�n and again in a term involving �n

2. From Eq. �30�, it is
clear that

n�n,0 � O��2

n4 � , �31�

while

�n,0
2 � O� �4

n10� . �32�

Therefore, the Newtonian orbit and its repetitions make a
contribution to the energy formula in Eq. �29� that is smaller
than other terms that have been ignored in that equation. At
the level of approximation given by Eq. �29� the Newtonian
orbit can be ignored.

B. Non-Newtonian orbits

Since the Newtonian periodic orbit makes no significant
contribution to the energy formula in Eq. �29� it is necessary
to examine the contributions of non-Newtonian periodic or-
bits. It is convenient to divide the non-Newtonian orbits into
classes based on how many times each orbit reflects from the
potential step at x=0. If pk designates a periodic orbit with k
reflections at the step, then ��pk�=k, so the contribution to
�n from orbits with k reflections is

�n,k =
1

�2 Im�
pk

�− 1���pk� 1

��pk�
�

��n−1/2�

��n+1/2� �2�

s2 �k

��1 −
4�2

s4 ���pk�/2

eispkds , �33�

where the sum is taken over all orbits with k reflections at the
step. Note the absence of the sum over �, which was used to
account for repetitions of orbits in Eq. �23�. When calculat-
ing the contribution of the orbits pk to �n it is unnecessary to
consider repetitions of these orbits, since the repetition of an
orbit with k reflections would be an orbit with 2k reflections,
which would belong to a different class. If the orbit pk is a
repetition of a shorter orbit, then the factor ��pk� counts how
many repetitions are involved. If pk is not a repetition of a
shorter orbit, then ��pk�=1.

Examination of Eq. �33� reveals the way in which differ-
ent classes of orbits contribute to different orders of pertur-
bation theory. The formula for �n,k contains a term propor-
tional to �k and other terms that involve higher powers of �.
The kth order correction from perturbation theory is always
proportional to �k so periodic orbits with k reflections can
only contribute to perturbation theory corrections of kth or-
der and higher. The Newtonian orbit �and its repetitions� can
contribute to all orders, but we have seen above that the
zeroth and first order corrections �as well as part of the
second-order correction� come from the Weyl average while
the contribution of the Newtonian orbit to the oscillatory
term �n has a negligible effect on the second-order term.
Single-reflection orbits can contribute, in principal, to first
order and higher corrections. Orbits with three or more re-
flections cannot contribute to the second-order correction
from perturbation theory, so they need not be considered in
comparing Eq. �29� to Eq. �14�.

A closer look at Eq. �33� reveals that two-reflection orbits
make only a negligible contribution to the second-order PT
correction. The variable of integration, s, in Eq. �33� is ap-
proximately equal to �n throughout the range of integration,
so

�n,k � O� �k

n2k� → n�n,k � O� �k

n2k−1�,�n,k
2 � O� �k

n4k� .

�34�

So �n,2�O��2 /n4� and the contribution to the energy for-
mula from two-reflection orbits is O��2 /n3�. Since Eq. �14�
already ignores terms of this order, the contribution of two-
reflection orbits can also be ignored.

These arguments imply that the dominant term from the
second-order PT correction must come from the contribution
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of single-reflection non-Newtonian periodic orbits �in com-
bination with the 4�2 / ��4n2� term in Eq. �29�, which comes
from the nonoscillatory part of Eq. �22��. This result is
shown explicitly in the next section.

C. Single-reflection orbits

Appendix B 2 provides a detailed calculation of �n,1. The
result is

�n,1 = �− 1�n+1 2�

n2�3sin� 2�

n�
� + O��2

n4 � . �35�

Since the contribution of the Newtonian orbit and its repeti-
tions is �n,0�O��2 /n5� and the contribution of k-reflection
orbits is �n,k�O��k /n2k� as shown above, then

�n = �n,1 + O��2

n4 � . �36�

So in comparing Eq. �29� with Eq. �14�, only the contribu-
tions to �n from single-reflection non-Newtonian orbits need
to be considered. Inserting Eq. �35� in place of �n in Eq. �29�
gives

En = E1
�0��n2 +

4�

�2 + �− 1�n 4�

n�3sin� 2�

n�
� +

4�2

n2�4 + O��2

n3 �
+ O��3

n5 �� . �37�

The perturbation theory approximation of Eq. �14� is only
valid if � /n�1. In this case the sine function in Eq. �37� can
be approximated as

sin� 2�

n�
� =

2�

n�
+ O��3

n3 � . �38�

Inserting this result into Eq. �37� and combining like terms
gives

En = E1
�0��n2 +

4�

�2 + �− 1�n 8�2

n2�4 +
4�2

n2�4 + O��2

n3 ��
= E1

�0��n2 +
4�

�2 +
4
n�2

�4n2 + O��2

n3 �� �39�

with 
n defined as in Eq. �10�. So the approximate formula
for the energies derived from periodic-orbit theory, including
only the contributions to �n from single-reflection orbits,
matches the formula derived from second-order PT �Eq.
�14�� in the regime in which PT is valid.

IV. COMPARISON OF APPROXIMATIONS AND EXACT
ENERGIES

Although the approximations given in Eqs. �14� and �37�
are equivalent in the limit � /n�1, it is instructive to exam-
ine how well each of these approximations performs outside
of this limit by comparing these approximations to the exact
energy eigenvalues of the AISW. For E�V0, the energy
eigenstates for the AISW are of the form �16�

	�x� = 	A sin�Q�x + a�� for − a � x � 0

B sin�q�x − a�� for 0 � x � a ,

 �40�

where Q��2mE /� and q��2m�E−V0� /�. Requiring 	 and
d	 /dx to be continuous at x=0 leads to the energy eigen-
value equation

Q cos�Qa�sin�qb� + q cos�qb�sin�Qa� = 0. �41�

The nth energy eigenvalue will lie in the open interval

�Ên , Ên+1� where

Ên = E�S��S=���n−1/2� �42�

with E�S� given in Eq. �19� �18�. A simple bisection method
can be used to rapidly solve Eq. �41� on this open interval to
find the value for En �22�. This procedure can be automated
to find any number of eigenvalues.

Once the eigenvalues are calculated they can be compared
with the approximations from periodic-orbit theory and PT.
Figure 2 shows the numerically computed energy eigenval-
ues for the AISW and the approximate values derived from
second-order PT �Eq. �14�� and from periodic-orbit theory
using only single-reflection orbits �Eq. �37��. The parameter
values for the data shown are �in scaled units�: a=3, V0
=100, m=1 /2, and �=1 so that the dimensionless quantity
�=450.

Perturbation theory requires � /n�1 to converge but, for
the data in Fig. 2, � /n�20 and we should not expect Eq.
�14� to work well. Figure 2 does show that the perturbation
theory formula fails to produce accurate energies, but the
agreement is not as poor as one might expect.

Periodic-orbit theory provides an exact formula for the
energy eigenvalues of the AISW. However, in deriving Eq.
�37� errors have been introduced by neglecting terms of or-
der E1

0�2 /n3 and terms of order E1
0�3 /n5. For �=450 and n

=10, neglecting these terms might be expected to produce
errors larger than 100E1

0. Therefore it is surprising that Eq.
�37� gives accurate energies for all n�10. This may be due
to cancellations among some of the neglected terms.

For the parameter values used in Fig. 2 there are 10 eigen-
states with En�V0. Note that neither PT nor periodic-orbit
theory provide good approximations for n�10. However,

�
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FIG. 2. �Color online� Comparison of approximations with nu-
merically computed eigenvalues. Open squares show eigenvalues
obtained by numerically solving Eq. �41�. Open circles show the
perturbation theory approximation of Eq. �14�. Filled diamonds
show the periodic-orbit theory approximation of Eq. �37�. Param-
eter values were chosen so that �=450.
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the periodic-orbit theory approximation is accurate for n
=10, which is surprising since the n=10 state has an energy
below the step. For E�V0 ghost orbits must be considered
and the version of periodic-orbit theory presented above is
not strictly valid.

For eigenvalues greater than V0 the periodic-orbit ap-
proximation is clearly superior to the PT approximation,
even though the two approximations agree in the limit � /n
�1. This general pattern holds true for other sets of param-
eter values with ��1.

V. CONCLUSION

The asymmetric infinite square well, which consists of an
infinite square well with a discontinuous potential step at the
center, is an unusual system because its energy eigenvalues
can be approximated using both perturbation theory �which
is usually applied only to systems with near-integrable clas-
sical dynamics� and periodic-orbit theory �which is usually
applied only to classically chaotic systems�. A comparison of
these two approximations reveals that different classes of
periodic orbits contribute to different orders of perturbation
theory. The zeroth and first-order terms in the PT expansion,
as well as part of the second-order term, can be derived using
only the nonoscillatory term �the Weyl average� from
periodic-orbit theory. A close examination of the oscillatory
part of the periodic-orbit theory formula reveals that orbits
with k reflections from the potential step can contribute only
to kth order and higher terms in the PT expansion. Aside
from the terms already accounted for by the Weyl average,
the Newtonian orbit and its repetitions �which have no re-
flections� make no contribution to the zeroth or first order
terms and their contribution to the second-order term is neg-
ligible. Periodic orbits with a single reflection from the po-
tential step contribute the dominant term in the second-order
PT correction.

Much of the behavior described above is likely to carry
over to a wide variety of other ray-splitting systems. At high
energies, the coefficient r for reflection from the potential
step will be small. Because every reflection contributes a
factor of r to the weighting factor Ap in the periodic-orbit
sum �Eq. �20��, orbits with fewer reflections will generally
make larger contributions to the sum. Orbits with more re-
flections will contribute only to higher order terms in the PT
expansion. It also seems that for any ray-splitting system the
Newtonian orbit will contribute only to second-order and
higher terms in the PT expansion. This indicates that single-
reflection orbits play a particularly important role in provid-
ing a semiclassical explanation of the eigenvalue spectrum in
ray-splitting systems.

It is also interesting to note that, for the AISW, periodic-
orbit theory �using oscillatory contributions only from
single-reflection orbits� provides a much more accurate ap-
proximation to the energy eigenvalues with E�V0 than does
standard perturbation theory. This raises the possibility of
using periodic-orbit theory to find accurate approximations
for energy eigenvalues in other ray-splitting systems. It
would also be interesting to compare the periodic-orbit
theory approximation with results from other forms of time-

independent perturbation theory like the Dalgarno-Lewis
method �23� or logarithmic perturbation theory �24�. High-
accuracy analytical approximations for the energy eigenval-
ues of ray-splitting systems could be useful for a variety of
applications, such as studying wave packet revivals in these
systems.

APPENDIX A: SECOND-ORDER PERTURBATION
THEORY

The second-order correction from PT is given by Eq. �8�
where the matrix element in the denominator is


	k
�0��Vp�	n

�0�� =
V0

a
�

0

a

sin� k��x + a�
2a

�sin�n��x + a�
2a

�
=

V0

�
�−

sin��k − n��/2�
k − n

+
sin��k + n��/2�

k + n
� .

�A1�

The absolute value of this matrix element simplifies to

�
	k
�0��Vp�	n

�0���2

=�
0, k and n are both even or

both odd

4V0
2k2

�2�k2 − n2�2 , odd n and even k

4V0
2n2

�2�k2 − n2�2 , even n and odd k .
� �A2�

So the second-order PT correction �Eq. �8�� is

En
�2� = �

8mV0
2�a + b�2n2

�4�2 �odd k

1

�n2 − k2�3 , even n

8mV0
2�a + b�2

�4�2 �even k

k2

�n2 − k2�3 , odd n .�
�A3�

The infinite sums in Eq. �A3� can be approximated by first
noting that only values of k close to n �but differing from n
by an odd number� will make significant contributions to
these sums. If k=n+2i−1 then the first sum in Eq. �A3� can
be written

�
odd k

1

�n2 − k2�3 = �
i=�1−n/2�

�
1

��2i − 1��1 − 2i − 2n��3

= −
1

8n3� �
i=−�

�
1

�2i − 1�3 −
3

2n
�

i=−�

�
1

�2i − 1�2�
+ O� 1

n5� . �A4�

If n is large then the O�1 /n5� terms can be ignored. Now
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�
i=−�

�
1

�2i − 1�3 = 0 �A5�

since each positive term in the sum is cancelled by a corre-
sponding negative term of equal absolute value. The other
sum in Eq. �A4� is

�
i=−�

�
1

�2i − 1�2 = 2�
i=1

�
1

�2i − 1�2 =
�2

4
. �A6�

Inserting the results from Eqs. �A5� and �A6� into Eq. �A4�
gives

�
odd k

1

�n2 − k2�3 =
3�2

64n4 + O� 1

n5� . �A7�

Inserting this result into Eq. �A3� shows that for even n

En
�2� =

3ma2V0
2

2�2�2n2 + O�ma2V0
2

�2n3 � . �A8�

The sum that appears in Eq. �A3� for odd n can be ap-
proximated �using k=n+2i−1� as

�
even k

k2

�n2 − k2�3 = �
i=�1−n/2�

�
n2 + 2n�2i − 1� + �2i − 1�2

��2i − 1��1 − 2i − 2n��3

= n2 �
i=�1−n/2�

�
1

��2i − 1��1 − 2i − 2n��3

+ 2n �
i=−�

�
1

�2i − 1�2�1 − 2i − 2n�3 + O� 1

n3� .

�A9�

The first sum on the right hand side of Eq. �A9� is identical
to the sum in Eq. �A4� and thus it evaluates to the result
given in Eq. �A7�. The second sum on the right hand side of
Eq. �A9� can be expanded in powers of 1 /n and if only the
lowest order term is kept the result is

�
even k

k2

�n2 − k2�3 =
3�2

64n2 −
1

4n2 �
i=−�

�
1

�2i − 1�2 + O� 1

n3�
= −

�2

64n2 + O� 1

n3� . �A10�

Inserting this result into Eq. �A3� shows that for odd n

En
2 = −

ma2V0
2

2�2�2n2 + O�ma2V0
2

�2n3 � . �A11�

Combining the results for even and odd n provides the result
given in Eq. �9� above.

APPENDIX B: PERIODIC-ORBIT THEORY

1. Newtonian orbits

The contribution of the Newtonian orbit and its repetitions
to �n is given by

�n,0 =
1

�2 Im�
�=1

�
1

�
�

��n−1/2�

��n+1/2� �1 −
4�2

s4 ��

ei2�sds

=
1

�2 Im�
�=1

�
1

�
��

��n−1/2�

��n+1/2�

ei2�sds − 4��2�
��n−1/2�

��n+1/2� ei2�s

s4 ds�
+ O��4

n9� . �B1�

The first integral in the right hand side of Eq. �B1� is easily
evaluated

�
��n−1/2�

��n+1/2�

ei2�sds =
ei2��n sin����

�
= 0. �B2�

The second integral in the right hand side of Eq. �B1� can be
approximated by changing the variable of integration x=s
−n� and expanding the integrand in powers of 1 /n to find

�
��n−1/2�

��n+1/2� ei2�s

s4 ds = �
−�/2

�/2 ei2��n�+x�

�n� + x�4dx

=
1

�4n4�
−�/2

�/2

ei2�x�1 −
4x

n�
�dx + O� 1

n6� .

�B3�

The integral on the right hand side of Eq. �B3� can then be
split into two parts. The first part evaluates to zero, since it is
equivalent to the integral in Eq. �B2� with n=0. The second
part involves the integral

�
−�/2

�/2

xei2�xdx =
i

2�2 �sin���� − �� cos����� =
i��− 1��+1

2�
.

�B4�

Substituting these results back into Eq. �B1� gives

�n,0 =
8�2

�6n5 �
�=1

�
�− 1��+1

�
+ O��2

n6 � . �B5�

The infinite sum in Eq. �B5� can be evaluated:

�
�=1

�
�− 1��+1

�
= log�2� �B6�

and substituting this result into Eq. �B5� gives the result
shown in Eq. �30� above.

2. Single-reflection orbits

Periodic orbits in the AISW can be represented as se-
quences of the letters L and R, where L represents a back-
and-forth motion across the left side of the well and R indi-
cates back-and-forth motion across the right side of the well
�Fig. 1�. The Newtonian orbit is represented by LR �or RL�
since it involves motion on one side of the well immediately
followed by motion on the other side. Examples of orbits
with a single reflection are: L, R, LRL, RRL, LRLLRLR, etc.
The cyclic permutation of the symbols in the representation
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of a periodic orbit just produces a different representation of
the same orbit �but starting at a different point in the cycle�.
Therefore, all cyclic permutations of symbols are considered
equivalent. For example, LRL and RLL are really the same
orbit. Each group of equivalent symbol sequences defines a
necklace �a name chosen to conjure the image of arranging
the symbols in a circle�. A particular sequence can be chosen
to represent each necklace.

The symbolic necklaces for periodic orbits with exactly
one reflection fall into two groups. The first group consists of
necklaces that can be represented by some number of repeti-
tions of the sequence LR followed by a single L. Table I lists
several of the necklaces in this group along with the values
of nL+nR, ��p�, and ��p� for each necklace. The bottom row
of the table provides general formulas for the jth necklace in
the group. The contribution of this group to �n,1 is desig-
nated �n,1L and is given by

�n,1L =
2�

�2 Im�
j=1

�

�− 1�2j−1

��
��n−1/2�

��n+1/2� 1

s2�1 −
4�2

s4 � j−1

ei��2j−1�s+2�/s�ds

= −
2�

�2 �
j=1

�

Im�
��n−1/2�

��n+1/2� ei�2j−1�sei2�/s

s2 ds + O��2

n6 � .

�B7�

This integral can be written in terms of the variable x=s
−n� to give

�n,1L = −
2�

�2 �
j=1

�

Im ei�2j−1�n�

��
−�/2

�/2 1

�n� + x�2ei�2j−1�xei2�/�n�+x�dx + O��2

n6 � .

�B8�

Note that

ei�2j−1�n� = �− 1�n �B9�

and two of the factors in the integrand of Eq. �B8� can be
expanded in powers of 1 /n to give

ei2�/�n�+x� = ei2�/�n���1 −
i2�x

n2�2� + O� �

n3� �B10�

and

1

�n� + x�2 =
1

n2�2�1 −
2x

n�
� + O� 1

n4� . �B11�

Substituting these results into Eq. �B8� gives

�n,1L = �− 1�n+1 2�

n2�4 Im ei2�/�n��

��
j=1

� �
−�/2

�/2 �1 −
�2n� + i2��x

n2�2 �ei�2j−1�xdx

+ O� �

n5� . �B12�

The integral in Eq. �B12� can be evaluated to give

�
−�/2

�/2 �1 −
�2n� + i2��x

n2�2 �ei�2j−1�xdx

= �
−�/2

�/2

ei�2j−1�xdx −
2n� + i2�

n2�2 �
−�/2

�/2

xei�2j−1�xdx

= −
2 cos�j��

2j − 1
−

i2n� − 2�

n2�2

�
2 cos�j�� + �2j − 1�� sin�j��

�2j − 1�2

= �− 1� j+1� 2

2j − 1
+

4i

n��2j − 1�2� + O� �

n2� �B13�

since cos�j��= �−1� j and sin�j��=0. The exponential factor
in front of the sum in Eq. �B12� can be expanded using
Euler’s formula

ei2�/�n�� = cos� 2�

n�
� + i sin� 2�

n�
� . �B14�

Substituting Eqs. �B13� and �B14� into Eq. �B12� gives

�n,1L =
2��− 1�n+1

n2�4 �2 sin� 2�

n�
��

j=1

�
�− 1� j+1

2j − 1

+
4

n�
cos� 2�

n�
��

j=1

�
�− 1� j+1

�2j − 1�2� + O��2

n4 � .

�B15�

Note that

�
j=1

�
�− 1� j+1

2j − 1
=

�

4
�B16�

and

TABLE I. Parameters for periodic orbits with ��p�=1 and nL

−nR=1.

Necklace nL+nR ��p� ��p�

L 1 0 1

LRL= �LR�+L 3 2 3

LRLRL=2�LR�+L 5 4 5

] ] ] ]

�j−1�� �LR�+L 2j−1 2j−2 2j−1
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�
j=1

�
�− 1� j+1

�2j − 1�2 = G , �B17�

where G�0.916 is Catalan’s constant. Inserting the results
for these sums into Eq. �B15� gives

�n,1L =
2��− 1�n+1

n2�4 ��

2
sin� 2�

n�
� +

4G

n�
cos� 2�

n�
�� + O��2

n4 � .

�B18�

The necklaces in the second group of single-reflection or-
bits can be represented by repetitions of the sequence RL

followed by a single R. Table II provides values of nL+nR,
��p�, and ��p� for several of these necklaces as well as gen-
eral formulas for the jth necklace in this group. The contri-
bution to �n,1 from this group of orbits is designated �n,1R
and is given by

�n,1R =
2�

�2 Im�
j=1

�

�− 1�2j�
��n−1/2�

��n+1/2� 1

s2

��1 −
4�2

s4 � j−1

ei��2j−1�s−2�/s�ds . �B19�

Note that Eq. �B19� is identical to Eq. �B7� except for the
change �→−�. So �n,1R can be evaluated by simply chang-
ing �→−� in Eq. �B18�. The result is

�n,1R =
2��− 1�n+1

n2�4 ��

2
sin� 2�

n�
� −

4G

n�
cos� 2�

n�
�� + O��2

n4 � .

�B20�

The contribution to �n from all of the single-reflection
orbits is simply the sum of the contributions from the two
groups: �n,1=�n,1L+�n,1R. Adding Eqs. �B18� and �B20�
produces the result given in Eq. �35�.
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